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The problem of the asymptotic stability of a linear system, whose parameters belong to a certain set, is considered. Stability criteria 
for a number of typical special cases are obtained. The results should find application when investigating the dynamics of mechanical 
systems with constraints, as shown by the example of the oscillations of a slider on a rough plane. �9 2006 Elsevier Ltd. All rights 
reserved. 

Similar problems were solved when analysing the effect of the force structure on the stability of 
equilibrium. In particular, the Thomson-Tait-Chetayev theorems [1] hold for general assumptions 
regarding the dissipative forces. Some results on stability under parametric uncertainty were presented 
in [2]. 

1. F O R M U L A T I O N  OF THE P R O B L E M  AND G E N E R A L  RESULTS 

We will investigate the stability of the following system 

2 

A#+Bdt+Cq = O, q~  R n, A , B , C ~  R" (1.1) 

assuming that the non-degenerate constant matrixA is specified and, as regards the constant matrices 
B and C, we only know that they belong to a certain class of matrices K. 

Problems of the dynamics of systems of rigid bodies in which the method of deformable elements is 
used to determine the reactions lead to a similar formulation. If q is the strain vector, the matrices B 
and C describe the dissipation and elastic forces. The form of these matrices is determined by expressions 
for the potential energy of deformations and the Rayleigh dissipative function, which are unknown a 
priori. The only thing that can be said with certainty is that these matrices are symmetrical and positive. 
The matrixA connects the reactions with the generalized accelerations, and it is traditionally associated 
with the mass distribution. In the case of non-ideal constraints the friction law is also taken into account 
in this matrix, and it can be asymmetrical. 

Stability under uncertainty is called robust stability [2]. General results on robust stability have so 
far only been obtained for certain special cases, for which the range of variation of the parameters is 
limited. In this paper we consider unbounded matrix classes. It is obvious that the wider the class K 
the stricter the requirements imposed on the matrixA in order to ensure stability for any B, C ~ K. 

We will first consider a well-known special case. 

Theorem 1. Suppose K = S+ is a class of symmetrical positive-definite matrices. For asymptotic stability 
of system (1.1) for any B, C ~ K it is necessary and sufficient thatA ~ K. 
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Proof.  The sufficiency follows from the third Thomson-Tait-Chetayev theorem [1]. To prove the 
necessity we carry out an orthogonal transformation of the coordinates in system (1.1), as a result of 
which the symmetrical part of the matrixA takes the diagonal form I[ aiill (i = 1 . . . . .  n) .  Assuming the 
matrices B and C to be diagonal, we set up the characteristic equation 

det]la~,2 + n~, + CII = 0 (1.2) 

In Eq. (1.2) the coefficient of %2 is a polynomial of the first degree in aii with positive coefficients, 
which depend on the elements of the matrices B and C. The positiveness of this polynomial, necessary 
for stability, means that aii >-- 0 (i = 1, . . . ,  n) .  We will further assume that there is a non-zero element 
outside the principal diagonal in matrixA, for example a12 :r 0. Then, the second-order corner minor 
of matrix (1.2) is a fourth-degree polynomial, the coefficients of which depend on the elements bii and 
s (/ = 1, 2) of the matrices B and C. A check of the Hurwitz conditions shows that i f  all~a22 = bu/b22 = 
c11/c22, where a22cll > allb21, the polynomial has a root in the right half-plane. Taking the large 
parameters into account, we obtain that the characteristic polynomial (1.2) also has this root. The 
contradiction obtained shows that a 12 = 0. Finally, from the condition for the matrixA to be degenerate 
we obtain that aii > 0 (i = 1, . . . ,  n) ,  whence it follows thatA e K. 

Another special case is the class of positive scalar matrices. System (1.1) takes the form 

A # + b g l  + c q  = 0 (1.3) 

where b and c are positive numbers. 

Theorem 2. For the asymptotic stability of system (1.3) for any b and c, it is necessary and sufficient 
that all the eigenvalues of the matrixA should be positive real numbers. 

Proof.  By means of a non-degenerate linear transformation of system (1.3) we reduce the matrixA 
to real normal form (in this case only the first term in Eq. (1.3) is changed). The following second- 
order equation corresponds to every real eigenvalue ~,a of this matrix in characteristic equation (1.2) 

~,a~,2+b~,+c = 0 

the roots of which lie in the left half-plane only when ~'a > 0. The following fourth-order equation 
corresponds to complex eigenvalues (~ ___ il3 

~ 2 + b ~ , + c  1~,2 [ = p4~,4+p3~,3+p2~,z+pl~,+po = 0 
_[~2 ~ 2  + b~, + c I 

2 2, b 2 2 
P4 = ~ + 1~ P3 = 2t~b, P2 = + 2txc, Pl = 2bc ,  Po = c 

(1.4) 

The Hurwitz conditions for a fourth-order polynomial are 

2 2 
p j > O ,  PlP2P3 > p o p 3  + p I p 4 ,  J = 0, 1 . . . . .  4 (1.5) 

Substituting the values (1.4) into conditions (1.5), we arrive at the single inequality 

~b  2 > C~ 2 

which is satisfied for any positive b and c only when (~ > 0 and 1~ = 0, which has also been confirmed. 
The classes of matrices considered in Theorems 1 and 2 correspond to two cases: in Theorem 1 no 

restrictions are imposed on the deformed components, while in Theorem 2 a model of similar linear 
viscoelastic components is used. We will discuss some intermediate cases below. 

2. THE CASE OF TWO I N D E P E N D E N T  N O N - L I N E A R  C O M P O N E N T S  

Suppose n = 2, and, as the class K, we consider the class D of diagonal matrices with positive elements. 
From the practical point of view this case corresponds to the model of two independent deformable 
components, no necessarily the same or linear. 
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Theorem 3. For the asymptotic stability of system (1.1), where n = 2, for anyB, C ~ D it is necessary 
and sufficient for the following conditions to be satisfied 

a l l > 0 ,  a z 2 > 0  , A = detA>0,  a12a21 > 0  (2.1) 

Proof. Expanding determinant (1.2), we obtain the following expressions for the coefficients of 
characteristic equation (1.4) 

P4 = A, P3 = allb22+a22bll ,  P2 = allC22+a22Cll +bllb22 
(2.2) 

Pl = b l l ezz+bzzCl l  , P0 = c11c22 

We will first assume that one of the inequalities (2.1) has the opposite meaning. If the first inequality 
is violated, then as baa ---) 0 we will have P3 < 0. If A < 0 then P4 < 0. Finally suppose a12a21 < 0. 
Substituting expressions (2.2) into the last condition of (1.5) we arrive at the inequality 

_a12a21(bllc22 + b22r )2 < bllb22(allb22 + a22bll)(bllC22 + b22Cll ) + 

+ b ll b22(a i I r - a22Cll )2 
(2.3) 

The last term on the right-hand side of this inequality can be made zero by choosing ca1 and c12. Then, 
the left-hand side will have a quadratic form in bal and b12, while the right-hand side will have a fourth- 
order form in these coefficients. Hence, when b11, b22 ----) 0, inequality (2.3) is not satisfied, which indicates 
instability. 

The sufficiency of conditions (2.1) following from the fact that the left-hand side of inequality (2.3) 
is negative, while the right-hand side is positive. 

Suppose D 2 is a set of second-order diagonal matrices with positive elements, for which the second 
element is not less than the first. 

From the practical point of view, the use of the set D 2 as the class K indicates that the model of two 
similar non-linear deformable components is chosen, where, for these conditions, the second component 
is loaded more than the first. 

Theorem 4. For the asymptotic stability of system (1.1), where n = 2, for any B, C ~ D 2 it is necessary 
and sufficient for the following conditions to be satisfied 

all >0,  al l  +a22 > 0 ,  A > 0 ,  

0, if x < 0  

tl)(X) = [_X2/4 ' if X>0 

a12a21 > tl)(all - a22 ) 

(2.4) 

Proof. The first two inequalities of (2.4) are equivalent to the requirementp3 > 0 for all b22 _> bu > 0. 
To clarify the meaning of the last inequality of (2.4) we divide both sides of condition (2.3) by bllb22. 
We finally obtain 

-l 2 
-al2a21(Cll~ + 7 c22) ( (allb22 + a22bll)(bllc22 + b22c11) + (a11c22 - a z 2 c l l )  2 

7 = ~ j > l  
(2.5) 

The first term on the right-hand side of this inequality is positive, and it can be made as small as 
desired without changing the remaining terms of this formula. If a 12a21 > 0, inequality (2.5) is satisfied, 
and if a12a21 < 0, its left-hand side reaches a maximum when y = 1. 

Consequently, condition (2.5) is equivalent to the following inequality 

-a12a21 < ( a l l ~ _  a22)2/(1 + ~ ) 2  ~ -- c22]Cll _> 1 (2.6) 

If all  < a22, the minimum value of the right-hand side of inequality (2.6) is equal to zero. When 
all  > a22 , the minimum value is reached when 8 = 1. Both these possibilities are combined in the last 
inequality of (2.4). 
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Remarks. 1. We will define D1 as a set of second-order diagonal matrices with positive elements, for which the 
first element is not less than the second. Then, an assertion similar to Theorem 4 will hold, but with the coefficients 
all and a22 interchanged. 

2. The non-satisfaction of conditions (2.1) or (2.4) indicates that for certain B, C ~ K the system is unstable. 
Moreover, we can state the conditions of instability for any B, C ~ K. When K = D these include the cases when 
the first two inequalities of (2.1) or the third inequality have opposite meanings [3]. If K = D2, violation of the 
third inequality of (2.1) (whenp4 < 0) or of the first two inequalities of (2.4) (whenp3 < 0) leads to instability. 

3. If neither the conditions of Theorems 3 or 4 nor the conditions in Remark 2 are satisfied, then, depending 
on the choice of the matrices B, C ~ K, we can have both stability and instability. The transition from stability to 
instability when there is a continuous change in the elements of these matrices occurs in accordance with the Hopf 
bifurcation scenario, since the characteristic equation in all the cases considered has no zero roots. 

3. O S C I L L A T I O N S  O F  A S L I D E R  O N  A R O U G H  P L A N E  

We will consider a rigid body in the form of parallelepiped, which slides on a rough horizontal plane. 
This system is already well known from Coulomb's works on determining the laws of friction. 
Nevertheless, certain aspects of the dynamics of a slider remain unclear. These include the oscillations 
of a body in a vertical direction, observed in practice. For the case of a position, which moves between 
two guides, these oscillations have been explained [4] by resonance between the natural frequencies of 
the system. Possible reasons for these are also [5] collisions between microroughnesses and oscillations 
of the supports (microseisms). To explain the phenomenon of the "squealing" of brake shoes, a model 
of four linear deformable components with specified characteristics was used in [6]. Below we propose 
a model of two similar non-linear components, for which the stiffness and viscosity coefficients increase 
together with the deformations. 

We will assume that the motion occurs in a vertical plane, which is the plane of symmetry of the body. 
We will direct the coordinate axes horizontally in the sliding direction and vertically upwards. The 
fundamental theorems of dynamics are expressed by the equations 

mJc" = X - g N ,  m y  = Y + N, mk2ip = M + M N - g b N  (3.1) 

where m is the mass of the body, a and b are the half-lengths of its edges, k is the radius of inertia, x, 
y and r are the coordinates of the centre of mass and the angle of rotation of the body, kt is the friction 
coefficient, X, Y and M are the external forces and their moments, and N and MN is the principal vector 
and principal moment of the normal reaction. 

We will mentally place the deformable components at the corner points of the body, in which case 

N = N 1 + N  2, MN = a ( N 2 - N i )  (3.2) 

We have the following equations for the deformations of the components 

51 = a t p - y ,  52 = - a t p - y  (3.3) 

Substituting expressions (3.2) and (3.3) into Eqs (3.1), we obtain 

mk2~i = ( - 1 ) i + l [ a M + a 2 ( N 2 - N l ) - I . t a b ( N l + N 2 ) ] - k 2 ( y + N l + N 2 ) ,  i = 1,2 (3.4) 

Replacing the left-hand side in Eq. (3.4) by zero, we can obtain the equilibrium values of the reactions, 
and then the equilibrium deformations 5 ~ 5 ~ Then, linearizing system (3.4) in the neighbourhood of 
equilibrium, we obtain a system of the form (1.1) in the perturbations qi = 5i - 50, where 

ONi(5 ~ O) ONi(5 ~ O) mlc E 
bi = Oqi ' c i  = Oqi , A = 4a 211a0[{; i , j  = 1, 2 

all = I + U - V ,  a12 = - I + U - V ,  a21 = - I + U + V ,  a22 = I + U + V  

U = a21k 2, V = gab lk  2 

We will consider the problem of the sliding stability of a slider with respect to the variables 5i, 6i 
(i = 1, 2). Since these variables define the motion of the centre of mass of the body along the vertical, 
and also its rotational motion, the presence of asymptotic stability indicates that the oscillations along 
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the vertical, due to the initial perturbations, decay with time. We will use the results obtained above to 
investigate the stability. 

It can be verified that the conditions of Theorem 2 are satisfied for all U, V > 0. This means that the 
model of linear components is unsuitable for describing non-decaying oscillations. 

The conditions of Theorem 3 reduce to the single inequality 

v<lu-11 
which indicates that oscillations do not occur if the friction coefficient does not exceed a certain threshold 

~t < It* = ]a 2 -  kzl/(ab) (3.5) 

For a homogeneous slider k 2 = (a 2 + b2)/3, whence 

la* = 12aa-b21/(3ab)  (3.6) 

It can be seen that the critical value of the friction coefficient depends on the shape of the body and, 
in principle, can be as close to zero as desired. A body in the shape of a standard sheet of paper, standing 
on the short side, possesses the greatest instability (g* = 0). 

Theorem 4, where K = D2, must be used when the equilibrium solutions of system (3.4) satisfy the 
condition N2 > N1, which is satisfied, in particular, if the moment of the external forces M is equal to 
zero. Since a22 > an,  the stability condition also has the form (3.5). 

We will assume, finally, that the external moment ensures that the inequality N2 < N1 is satisfied. 
Then, the stability conditions are satisfied for all values of U, V > 0. 

It should be noted that for the values 

~t > la** = la 2 + k2l/(ab) 

we obtain all  < 0, which indicates that equilibrium values of the reaction, determined from system (3.4), 
do not exist or are non-unique [3]. 

This research was supported by the Russian Foundation for Basic Research (05-01-00308). 
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